Andrew **SALIJ** Computational Chemist

@ andrewsalij@andrewsalij.com
♥ github.com/andrewsalij
♥ andrewsalij.com
in linkedin.com/in/andrew-salij
♥ Evanston, IL

EDUCATION

Present PhD in Chemistry, Northwestern University, expected graduation September 2024
BA in Chemistry, St. Olaf College, magna cum laude

Skills

Programming Languages	Python, MATLAB, Bash, Wolfram Mathematica, LabVIEW.
Fields	Chemistry, Optics, Machine Learning, Materials Science.
Methods	DFT, FDTD, Computer-aided Design.
Tools	git, Linux, Q-Chem, Quantum Espresso, PySCF, Tidy3D.

Experience

Present September 2019	NORTHWESTERN UNIVERSITY Doctoral Researcher with Roel Tempelaar > Developed Python software (numpy/scipy, pandas, TensorFlow) to model and to predict electronic
	structure and optics in both quantum and classical regimes
	> Provided computational tools and and quantum chemical theoretical insight into many cross-
	functional collaborations
	> Built data pipelines incorporating <i>ab initio</i> quantum chemical calculations to predict material proper-
	ties Python TensorFlow Bash Quantum Optics RCWA FDTD
May 2019	St. Olaf College
June 2016	Undergraduate Researcher with Robert Hanson (Sep. 2018 - May 2019)
	> Contributed to development of a website applet (JS-ICE) using JavaScript and the Jmol chemical
	scripting language for in-browser visualization and manipulation of crystal structures
	Structures Lead, St. Olaf-Carleton Engineering Team (2016-2017)
	> Organized the design of the structure of an autonomous drone using computer-aided design (CAD)
	Managed a team of ~10 people in delivering drone parts on schedule
	Undergraduate Researcher with Rodrigo Sanchez-Gonzalez (Summer 2016)
	> Wrote analysis software for data from the St. Olaf Pulsed Hypersonic Improved Test Cell and built
	additional components for the instrument using computer-aided design
	> Developed novel software for signal processing in the creation of 2D temperature maps using single-
	shot structured illumination

Awards

- 2023 Outstanding Researcher (Visionary), International Institute for Nanotechnology
- 2023 1st Place, InQuanto[™] Quantum Chemistry Challenge, Quantinuum
- 2022 Poster Prize (2nd) at International Symposium on Chirality (2022) in Chicago
- 2019 Undergraduate Award in Physical Chemistry, St. Olaf College
- 2017 Great Conversation Fellow, St. Olaf College, given annually to two students for excellence in humanities
- 2016 2nd Place Prize for proposed cause of Hypoplastic Left Heart Syndrome in Innovative Minds Partnering to Advance Cardiac Theranostics (IMPACT) at Mayo Clinic

PUBLICATIONS

Chen, T., **Salij, A.**, Parrish, K., Rasch, J., Brown, P., Dhavamani, A., Urraci F., Pescitelli, G., Aronica, L.A., Zinna, F., Arnold, M. S., Wasielewski, M. R., Di Bari, L., Tempelaar, R., & Goldsmith, R. (2024). A Chiral Microcavity based on apparent circular dichroism. *Nature Communications*, *15*, 3072.

Salij, A. H., Goldsmith, R. H., & Tempelaar, R. (2024). Theory predicts 2D chiral polaritons based on achiral Fabry–Pérot cavities using apparent circular dichroism. *Nature Communications*, *15*, 340.

Salij, A., Goldsmith, R. H., & Tempelaar, R. (2021). Theory of Apparent Circular Dichroism Reveals the Origin of Inverted and Noninverted Chiroptical Response under Sample Flipping. *Journal of the American Chemical Society*, *143*(51), 21519-21531.

Salij, A., & Tempelaar, R. (2021). Microscopic theory of cavity-confined monolayer semiconductors : Polariton-induced valley relaxation and the prospect of enhancing and controlling valley pseudospin by chiral strong coupling. *Physical Review B*, 103(3), 035431.